a4 Line-follow 101 «

Level-1 Python with Virtual
Robotics

CodeSpace Mission Pack

Teacher’'s Manual

Table of Contents

Table of Contents 1
Introduction 3
Our Approach

How is this different? 5
CodeSpace Overview 6
Troubleshooting 7
Helpful Hints 7
Classroom Preparation 8
Assessing Student Created Project Remixes 9
Testing Services 10
Certiport IT Specialist - Python 10
Background 10
Test Format and Administration 10
Practice Materials 10
Content Overview 10
OpenEDG PCEP 10
Background 10
Test Format and Administration 10
Practice Materials 10
Content Overview 10
Firia Labs Python Level-1 Learning Objectives 11

** Any mission referred to in the above table that you do not currently see on sim.firialabs.com is coming
soon. ** 14
Level 1 Python with Virtual Robots Unit Overview 15
MISSION 1 & 2: Welcome & Introducing CodeBot 17
MISSION 3: Light the Way 18
MISSION 4: Get Moving 20
MISSION 5: Dance Bot 23
MISSION 6: Robot Metronome 25
MISSION 7: Line Sensors 26
MISSION 8: Boundary Patrol 27
MISSION 9: Line Following 29

(= FIRIA Lass

www.firialabs.com

MISSION 10: Fido Fetch 31
MISSION 11: Airfield Ops 32
MISSION 12: King of the Hill 33
MISSION 13: Going the Distance 34
MISSION 14: Music Box 35
MISSION 15: Cyber Storm 37

(= FIRIA Lass

www.firialabs.com

Introduction

Welcome!
This guide book will give you everything you need to make the most of the Firia Labs Python with Robots

Coding Kits.

For many students and teachers, this is their very first exposure to text-based coding. If that’s your situation,
don’t worry! We've designed the kits and this manual to gently guide you from “absolute beginner” to a very
comfortable level of proficiency.

Don’t Panic :-)

We understand that tackling a subject like Computer Coding can be pretty intimidating. Fear not, we’ve built
some amazing tools to help you!

As you begin this journey, know that the team at Firia Labs is here to help too! If you run into any problems,
just let us know and we’ll get you back on track.

Email us at: support@firialabs.com

If there’s a problem that needs our attention, you can create a support ticket and we’ll get back to you directly!
You'll also find a community forum on our “On Fire With Firia”_Facebook page, where you can ask questions
and post ideas, or share your latest projects with other CodeSpace users!

(= FIRIALABs

www.firialabs.com

Our Approach

Project Based Motivation
Student: “Why are we even learning this?”

Sound familiar? We all find that knowledge tastes so much better when you’re hungry for it! Our goal is to
motivate students with tangible, challenging, and practical projects ...that just happen to require coding to
build. We want students to think about how they might code a given project using what they already know.
Only then do we teach just enough coding concepts to help them get the job done. This approach gives
reason and meaning to each concept, as well as relevant problem context which helps them retain it!

We have also thrown a few “gamification” elements, such as Experience Points (XP), into our approach to
provide additional motivators. But we like to remind students: it’s not about “points” - it’s about “projects

H'

Typeitin
Student: “Hey, | can’t copy and paste the code from the lesson examples!”

Prior to our extensive testing of this program on groups of 4th—12th graders, we were concerned that the
“typing burden” might be a problem. But we were willing to risk it, because:

> Typing in the code forces focus, dramatically improving retention.
> Keyboarding proficiency is “key” to expressiveness in programming language.
> Mistakes in structure, grammar, punctuation, capitalization, etc. are priceless learning opportunities.

The last point above is crucial. Students learn an incredible amount from their mistakes! Our goal is to provide
awesome safety-nets for them, guiding them to iterate quickly through successive failed attempts to arrive at a
working solution.

Extensive classroom observation has convinced us that the “typing burden” is not a problem. Students dive
right in, and they don’t have to be speed typists to make great progress in coding.

Exploration and Creativity

One of the great things about coding is the expressiveness it affords. Coding is a craft that takes time to master,
but with only a few basic tools you can start crafting some pretty amazing things!

Before they even complete the first project, some of your students will probably be experimenting “off-script”
with some ideas of their own. That’s a good thing! We list some ideas for re-mixing each project’s concepts
later in this guide.

Remember that students are learning programming skills they could use to build any application—from
controlling a rocket-ship to choreographing dance moves. Nurture the creativity, explore, and instill the Joy of
Coding!

@ FIRIAAss

www.firialabs.com

How is this different?

There are so many approaches to teaching coding. How is this different?

While there are some great online coding education programs, we think our approach helps reach a broader
range of students:

> Teaches a real, professional programming language. Even younger students appreciate that you can
make real money with these exact skills.

> Gives students the tools to create anything they can imagine. Beyond the projects and curriculum, we
give students a full-fledged software development environment. These are professional-strength tools
for writing code. (Contrast that with other approaches that only provide a game-playing environment.
Once you “win”, then what?)

& FIRIAuzss

www.firialabs.com

CodeSpace Overview

The CodeSpace Web Application

Ready to Code? We've made it really easy to get started!

Here are the basic steps:

1. Open your Chrome web browser
2. Goto https://sim.firialabs.com

3. Login to your account or create one (click in the bottom left corner)

4. Select Class (click the two people icon in the upper left corner) E

Mission Pack Selection ¢ JOIN CLASS

Seats Available / Licensed

Active Class Name Mission Pack

Free Trial: Python Level-1 Introduction to CodeSpace and Robotics Simulation 0
N/A

Grice CS class Python Level-1 with Virtual Robotics

Python Level-1 with Virtual Robotics
Learn Python with virtual robotics challenges and a pathway to Certification.

LEVEL-1

(= FIRIA Lass

www.firialabs.com

Troubleshooting
Help! It’s not working!?
What about problems with logging in, python coding, or other issues?

For coding problems, the first thing to try is to go back to the simplest example that does work for you. If there
are error messages you don’t understand, let us know about them. For that and any other issues, file a ticket at
the support link above, go to our “On Fire With Firia” Facebook page and post the question, or email us at
support@firialabs.com. We have real humans eager to help solve your problems!

Helpful Hints
Appendix A: Mission and Objective Contents, including all CodeTreks and Solutions

Appendix B: The Toolbox - all tools revealed!

Classroom Preparation

One to One

Writing code is similar in many ways to literary writing. There are grammar and syntax rules that must be
followed, all while composing a meaningful narrative to satisfy the writer’s objectives.

Just as developing writing skills requires individual practice, learning to code requires that students compose
and test their work individually. They need to make their own mistakes, and struggle through correcting them.

Pacing and Remixing

We suggest that students be allowed a minimum of 30-minutes per session, at least until they get through the
first two projects. In our experience, many students will stay engaged in excess of 90 minutes of one-on-one
time working through projects. Of course, this depends on the students and the dynamics of the particular
classroom. There’s no substitute for a teacher’s understanding of what works for a particular group of
students. Experiment, and find what works for you! In the pacing guidelines below, the suggested days are
based on a 90 minute block. Adjust accordingly to your school day. Because of the time it takes to set up and
tear down, it may take more than twice as many days in a 45 minute period.

Naturally, students will progress at different speeds. Since the material is set up for independent study, you
have the option of letting faster students move ahead to more advanced projects independently.

(= FIRIALABs

www.firialabs.com

Remixing provides an alternative that can keep groups more synchronized in their progress through the
projects. Each project can be modified, extended, and enhanced. Many students will want to experiment with
what they’ve learned, and we offer suggestions along the way to spur this creative tinkering. If you want to
keep a groups’ progress in sync, instruct accelerated students to remix the current project upon completion,
rather than moving to the next one.

We want the teachers to feel free to remix too! Create your own lesson plans using the same template as
below. Then share your ideas with our online PLN at our facebook page On Fire With Firia!l

(= FIRIA Lass

www.firialabs.com

Assessing Student Created Project Remixes

We recommend, in order to generate mastery, a student should practice what they are learning. One way to
do this is to create a remix of each mission. A generic project rubric for these remixes can be found here as
either a printable version or a Google form for paperless grading. The rubric is intended to be used for any
Codespace project, but not all standards are met with every project. Make a copy and edit as needed. You may
also want to add custom requirements or point values specific for your class. A project planning sheet is also
available on the support page. Students should create a plan (and perhaps get it approved by the teacher)
before they begin. Remind students that revising is just as important here as it is in English class. These
revisions can lead to great conversations during the conferencing process. An example flowchart is available
for your guidance when teaching students how to make a flowchart of their ideas before they begin coding.
Technokids explains flowcharts with more examples and a video at the end.

Students should receive a copy of the rubric before beginning a project. You may want to make copies for all
students at the beginning of the course to put in their class notebooks, and then post specific project rubrics
electronically as you start a new unit. Discuss the criteria and what it means to earn mastery. It is beneficial to
give students time to revise and improve upon their projects (as time permits). Students who simply achieve
“Proficient” may be motivated to earn “Mastery,” so decide what your classroom policy and expectations will
be and explain it to students early on. You may need to revise policies as you get to know your students and
observe how CodeSpace works for them, so flexibility is important!

Student-Teacher and peer conferencing are integral to the learning process. This takes more time in class, but
this is not wasted time! Students will work harder and be more willing to do revisions, which is truly a
workplace life skill we'd like to instill in our students! To manage the process, it helps to have a submission
window, rather than one set due date. Before students submit, they should complete a peer review. This may
take modeling a few times before students do it correctly. They should go through the rubric and test the
program just as you would. This will give them the chance to find and correct mistakes before doing a
student-teacher conference. Once they submit, call students up for a conference. Share the Google Forms
version of the rubric (note-remember to edit as you did for the rubric you distributed at the beginning of the
project) with your students. Begin with an open-ended question, such as, “Tell me about your project,” before
moving on to the rubric. This may give you insight into who did what (if working in pairs) and what challenges
they encountered. As you conference about the rubric, ask them what level of mastery they think they
achieved, and ask for evidence as to why. Students are often much more critical of their work than need be. It’s
a good time to emphasize challenges and mistakes as learning opportunities, rather than just being “wrong.” If
there is room for improvement and still time in the submission window, students should be allowed to debug
and improve before submitting.

Students who are finished may enjoy having time to work on other unscripted projects while they wait for
their classmates to finish conferencing. Again, this is not wasted time! Learning through trial and error is time
well-spent.

A second way to assess students is to have them take practice certification tests. The students and teachers
will see just how much the students are learning by charting their scores before starting the modules, after
each module and after they have completed all of the modules. These modules are created to teach all
concepts needed in order to pass either the Certiport IT Specialist-Python or OpenEDG - PCEP certifications.

The next few pages discuss these certification pathways for Python and how Level 1 Python with Virtual
Robotics is aligned with these standards.

@ FIRIAzAss

www.firialabs.com

Level 1 Python With Robots was developed as a pathway to certification

Testing Services

Certiport IT Specialist - Python

Background

According to the Certiport website, “The Information Technology Specialist program is a way for students to
validate entry level IT skills sought after by employers. The IT Specialist program is aimed at candidates who
are considering or just beginning a path to a career in information technology. Students can certify their
knowledge in a broad range of IT topics, including software development, database administration, networking
and security, mobility and device management, and coding.” Python is one of the coding language pathways.
“Candidates for this exam will demonstrate that they can recognize, write, and debug Python code that will
logically solve a problem.”

Test Format and Administration
This is a computer based, online, 50 minute exam with 33-43 questions.

Practice Materials
Certiport offers CertPREP practice tests, powered by GMetrix, cost$

Content Overview
Certiport IT Specialist Exam Objectives - Python

OpenEDG PCEP

Background

OpenEDG offers a sequence of Python certifications.

Test Format and Administration

e PCEP-30-02 — Exam: 40 minutes, NDA/Tutorial: 5 minutes
e PCEP-30-01 — Exam: 45 minutes, NDA/Tutorial: 5 minutes
e 30 Questions each

e Single- and multiple-select questions, drag & drop, gap fill, sort, code fill, code insertion | Python 3.x

Practice Materials
Python Essentials lessons through PCEP

Content Overview

PCEP Certified Entry Level Python Programmer Exam Syllabus EXAM PCEP-30-02 - Active

(= FIRIA Lass

www.firialabs.com

10

Firia Labs Python Level-1 Learning Objectives

This is a unified set of Learning Objectives covering the requirements of both Certiport and OpenEDG.

www.firialabs.com

Ref |Category |Concept Focus Mission Other Missions
1.1 builtins input() Line Sensors Scoreboard
1.2 |builtins len() Robot Metronome | Scoreboard
1.3 builtins built-in functions Dance Bot
14 builtins print() with sep, end params Dance Bot
2.1 concepts |Interpreter vs Compiler Teacher Manual
Source code vs Object (machine)
22 concepts |code Teacher Manual
2.3 concepts |coding style, PEP8 basics Teacher Manual
2.4 concepts [Errors: Syntax, Runtime, Logic Teacher Manual Scoreboard
3.1 core None (future)
3.2 core identity operator: 'is' Eternal Flame
3.3 core using del to "undefined" variables (future)
3.4 core type inspection using type() function |Eternal Flame
3.5 core pass Cyber Storm
3.6 core Using help() on the REPL (future)
3.7 core Backslash line continuation (future)
3.8 core multiple assignment (unpacking) Music Box
3.9 core conditional statements: elif, else Fido Fetch
3.10 |core augmented assignments Go the Distance
3.11 |core type conversion: int() Music Box Rock Climber and Combo Lock
global vs local scope, global
3.12 |core keyword Line Following
3.13 |core bool Robot Metronome
3.14 |core conditional statements: if Robot Metronome
Keywords vs user-defined variable
3.15 |core names Dance Bot
3.16 |core Indentation Dance Bot
f= FIRIA LaABs

1

3.17 |core comments Light the Way
4.1 exceptions [exception handling: try, except Scoreboard
4.2 |exceptions [exception handling: else, finally Scoreboard
4.3 |exceptions [raising exceptions: raise Scoreboard
5.1 files File 1/0O: append, with Cyber Storm
5.2 |files File existence check, deletion Cyber Storm
5.3 files File 1/0: open, close, read, write Music Box
6.1 functions |recursion (future)
6.2 [functions |parameters vs arguments Boundary Patrol
6.3 |functions [positional vs keyword arguments Boundary Patrol
6.4 |functions |[function return values Line Sensors
6.5 |functions |default function parameters Dance Bot Boundary Patrol
6.6 |functions [defining functions Dance Bot
7.1 loops continue (future)
7.2 loops while-else, for-else (future)
7.3 loops using for loop to iterate over string |(future)
7.4 loops multiple assignment in for loop Music Box
7.5 loops using for loop to iterate over list Music Box
7.6 |loops break Line Sensors Cyber Storm
7.7 loops while loop Dance Bot
7.8 loops for loop, range() Dance Bot
8.1 math float (type and coercion/ctor) Eternal Flame
8.2 math Scientific notation (future)
8.3 math bitwise operators: ~ (future)
8.4 math bitwise operators: & Combination Lock
8.5 [math bitwise operators: | Combination Lock | Scoreboard
8.6 math bitwise operators: * Combination Lock
8.7 math int (type and coercion/ctor) Music Box
8.8 math Modulo % Runway Ops
f= FIRIA LaABs

www.firialabs.com

12

8.9 math Numeric multiply * operator Go the Distance
8.10 [math Numeric divide / operator Go the Distance
8.11 |math Integer division // Go the Distance Runway Ops
8.12 |math hex and octal literals Combination Lock
8.13 |math Power ** operator Combination Lock | Runway Ops
8.14 |math boolean 'and' Line Following
8.15 |math boolean 'or' Line Following
8.16 [math operator precedence Robot Metronome
8.17 [math bitwise shifts: << >> Robot Metronome | Combination Lock & Scoreboard
8.18 |math boolean 'not' Robot Metronome | Scoreboard
8.19 |math comparison operators Robot Metronome
8.20 |[math binary literals Light the Way Combination Lock
9.1 modules |datetime module (strftime, strptime) [Time Machine
9.2 modules |math module Rock Climber
9.3 modules |random module Eternal Flame
9.4 modules |import of modules Light the Way
9.5 modules |Using unittest Teacher Manual
9.6 modules |os, sys, os.path, io Teacher Manual Cyber Storm
10.1 [sequences|using list() constructor Traffic Light
10.2 [sequences|using tuple() constructor Traffic Light
10.3 |sequences |containment tests: 'in' and 'not in' Cyber Storm
10.4 [sequences|dictionary: copy() method Traffic Light
10.5 |sequences |list: copy() method and [:] to copy Traffic Light
10.6 [sequences|slicing lists Traffic Light
10.7 [sequences|copying a list Traffic Light
10.8 |sequences|negative indices Eternal Flame
10.9 |sequences [list: extend() Traffic Light
10.10 [sequences|list operator: + Traffic Light
10.11 [sequences|list operator: * Runway Ops
f= FIRIA LaABs

www.firialabs.com

13

10.12 [sequences|list: insert() Traffic Light
10.13 [sequences |list: remove() Traffic Light
10.14 |sequences |list: del (index or slice) Traffic Light
10.15 |sequences |list/tuple: index() Traffic Light

10.16 |sequences

list/tuple: sorted(), reversed()

Eternal Flame

10.17 |sequences

dictionary: keys(), items(), values()

(future)

10.18 [sequences|list: sort() Eternal Flame
10.19 |sequences |list: append() Music Box
10.20 [sequences |using dict() constructor (future)

10.21 |sequences

tuple: literals and usage

Line Following

10.22 |sequences

dictionary: literals and usage

Line Following

10.23 |sequences

list comprehensions

Line Following

10.24 |sequences

Nested lists/tuples: matrices

Line Sensors

10.25 |sequences

list: literals and usage

Robot Metronome

11.1 [strings string (type and coercion/ctor) Cyber Storm

11.2 |strings slicing strings Cyber Storm

11.3 |strings string escape sequences Cyber Storm

11.4 [strings multiline strings Music Box

11.5 |strings string formatting with f-strings Go the Distance

11.6 |strings string operator: + Scoreboard Cyber Storm
11.7 |strings string operator: * Rock Climber

11.8 |strings type conversion: str() Time Machine Combination Lock
11.9 |strings string formatting with string.format() |Rock Climber

12.1 |tools docstrings Boundary Patrol

12.2 |tools Using pydoc Teacher Manual

** Any mission referred to in the above table that you do not currently see on sim.firialabs.com is

coming soon. **

& FIRIAAEs

www.firialabs.com

14

Level 1 Python with Virtual Robots Unit Overview

Unit 0: Coding Unplugged (5-10 days™)

If your students come with no Computer Science background, it is important to start by building a foundation of
computational thinking. Dedicate some time for students to learn basic terms, such as algorithm, program, and
debug. See the Firia Labs collection of Unplugged Activities here.

Unit 1: Introductory Missions (7 days™)
Students will learn the basics of coding in Python and the CodeBots LEDs, and motors.

Mission 1: Welcome

Mission 2: Introducing CodeBot
Mission 3: Light the Way
Mission 4: Get Moving

Unit 2: Inputs and Outputs (10 days*)
Students will learn how to use the CodeBot LEDs, Buttons, speakers and motors.

Mission 5: Dance Bot
Mission 6: Robot Metronome

Unit 3: Get Moving (15 days*)
Students will learn how to optimize the CodeBot sensors and motors.

Mission 7: Line Sensors
Mission 8: Boundary Patrol
Mission 9: Line Following

Unit 4: Synthesize (15 days*)
Students will learn how to use sensor data and botservices to synthesize all you’ve learned!

Mission 10: Fido Fetch

Mission 11: Airfield Ops
Mission 12: King of the Hill
Mission 13: Going the Distance
Mission 14: Music Box

Mission 15: Cyber Storm

Note In the pacing guidelines, the suggested days are based on a 90 minute block. Adjust accordingly to your
school day. Because of the time it takes to set up and tear down, it may take more than twice as many days in
a 45-50 minute period. This is pacing for just the missions without remixes. Remixes would add time to this
curriculum. We suggest giving at least two hours to create a well planned remix.

(= FIRIA Lass

www.firialabs.com

15

Level 1 Python with Virtual Robots Pacing Guide

Week First Days .
1 Set-up, Unplugged Activities
Dedicate time to getting to know your students, assess their prior knowledge, and build a foundation of computer science basics.
Mission 1 & 2 Mission3 & 4
Week 2 Welcome & Introducing CodeBot Light the Way & Get Moving
A visual and hands-on tour of the components of These missions take you step-by-step through coding projects involving
your 'bot. sequences of motor control and LED lights. Learn how to turn on sound.
Mission 5
Week 3 Dance Bot
This mission teaches you about loops, debugging, variables, functions, and algorithms.
Week Mission 6
4 Robot Metronome
This mission turns your CodeBot into a time-keeping device that a musician can set to the tempo of their choice.
Mission 7
Week .
Line Sensors
5 L . .
This mission uses the line sensors to navigate your CodeBot.
Mission 8 ..
Mission 9
Boundary Patrol . .
Week . Line Following
The mission teaches you how to program . . .
6 The mission has your CodeBot mastering the biggest and
your CodeBot to roam a fenced area, .
. . baddest line-course around.
using line sensors to stay in bounds.
Mission 10
Week Fido Fetch
7 The mission trains your CodeBot to fetch using a dictionary of commands.
Mission 11
Airfield Ops Mission 12
Week
3 The mission teaches you some unique King of the Hill
programming concepts to help with The mission teaches all about the CodeBot’s accelerometer.
airfield runway operations.
Mission 13 ..
. . Mission 14
Going the Distance .
Week . , Music Box
The mission teaches about the CodeBot’s _ . .
9 The mission turns your CodeBot into a jukebox and teaches

wheel encoders and all the gritty details

. . . about Python'’s file operations.
of those glorious rotating discs. y file op

(= FIRIA Lass

www.firialabs.com

16

Level 1 Python with Virtual Robots Lesson Plans

UNIT 1: Introductory Missions MISSION 1 & 2: Welcome & Introducing # HOURS: 1-2
CodeBot

MISSION GOALS: Students will DAILY MATERIALS: VOCABULARY:

learn about the CodeBot hardware ® Google Chrome ° Peripherals

and the simulation environment. ° CPU

FOCUS STANDARDS:

LEARNING TARGETS:

° | can navigate CodeSpace.

° | can identify the main components of the CodeBot.

° | can create a new program and write code using conventions of capitalization and punctuation specific to Python.
SUCCESS CRITERIA:

d Identify major features of the CodeSpace interface: Text Editor, Objective Panel, Mission Bar, Toolbox, XP, Simulation

Toolbar, and Navigation Controls.
a Identify major parts of the CodeBot: USB connector, LEDs, Reboot button, Power switch

KEY CONCEPTS:
° Follow instructions in the Objective panel carefully. There is a lot of important reading!
° Look for “tool icons” to collect coding tools in your Toolbox as you go.

DISCUSS REAL WORLD APPLICATIONS:

Make sure each student takes the time to personally inspect different views of the CodeBot. Discuss the fact that all the electronic
devices they use have similar circuit boards inside. The tools and techniques they’re learning apply to all the electronic devices
they use every day!

Challenge students to name a few devices they use every day that might contain computer chips or “microcontrollers” such as the
one on the bot. How many of the following do they think of? There are so many more!

e Microwave oven e Video game controller Bread machine
e Cell phone e Refrigerator Alarm system
e Automobile e Home thermostat Fuel pumps

[] o

Watch or fitness tracker Coffee maker Automatic garage doors

Electronic locks

Challenge students to describe how our lives are impacted by the above technology, and to compare how related tasks were done
before computer technology was invented.

ASSESSMENT STRATEGIES:
1.4 Checkpoint - could use as an exit slip
2.5 Submit - Students label the different parts of the CodeBot.

TEACHER NOTES:
Always refer to Appendix A if you get stuck. It has the “Answer Keys” for you
2.1 Review Inputs and Outputs

(= FIRIA Lass

www.firialabs.com

17

